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[1] We present a method with which we determined the local lunar gravity field model
over the South Pole-Aitken (SPA) basin on the farside of the Moon by estimating
adjustments to a global lunar gravity field model using SELENE tracking data. Our
adjustments are expressed in localized functions concentrated over the SPA region in a
spherical cap with a radius of 45° centered at (191.1°E, 53.2°S), and the resolution is
equivalent to a 150th degree and order spherical harmonics expansion. The new solution
over SPA was used in several applications of geophysical analysis. It shows an increased
correlation with high-resolution lunar topography in the frequency band l = 40–70,
and admittance values are slightly different and more leveled when compared to other,
global gravity field models using the same data. The adjustments expressed in free-air
anomalies and differences in Bouguer anomalies between the local solution and the a priori
global solution correlate with topographic surface features. The Moho structure beneath
the SPA basin is slightly modified in our solution, most notably at the southern rim of the
Apollo basin and around the Zeeman crater.
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1. Introduction

[2] The gravity field of a planetary body is often expressed
in globally supported spherical harmonics, since these
functions arise naturally from Laplace’s equation expressed
in spherical coordinates. Their global support however
means that a large expansion in spherical harmonics is
needed to describe small-scale structures, which results in
the need to estimate a large amount of coefficients from data.
Depending on the data density which may vary geographi-
cally, this is not always possible or stable. In those cases,
either smoothed global solutions are obtained by applying
regularization of the ill-posed inverse problem in the form of
a Kaula rule [Kaula, 1966] (which constrains each coeffi-
cient to zero with a given uncertainty, thus suppressing
spurious power in especially the higher degrees), or, alter-
natively, different representations that describe the gravity
signal locally, at smaller scales, can be used. A variety of
representations exist and they have been applied success-
fully to data from satellites orbiting many different planetary
bodies. To list but a few examples: the use of mass con-
centrations (mascons) to describe gravity on the Moon [Muller

and Sjogren, 1968], or on Earth using recent GRACE data
[Rowlands et al., 2010], analysis of line-of-sight accelera-
tions or Doppler residuals for Venus using gravity distur-
bances [e.g., Barriot and Balmino, 1992], and estimating mass
anomalies on Jupiter’s moon Ganymede [Anderson et al.,
2004; Palguta et al., 2006]. Furthermore, McKenzie and
Nimmo [1997] introduced a method to use line-of-sight
accelerations to directly estimate the admittance between
gravity and topography locally, from which elastic thickness
estimates can be derived. This method was applied to lunar
data by Crosby and McKenzie [2005].
[3] The lunar gravity field seems especially suitable for

using local methods, because the density of available track-
ing data has been extremely asymmetrical: standard 2-way
and 3-way tracking from Earth stations (where the uplink
and downlink stations are either the same or different,
respectively) leaves a gap in tracking over the farside of the
Moon due to the 1:1 spin-orbit resonance of the Earth-Moon
system. The Lunar Prospector (LP) mission (1998–1999
[Binder, 1998]) flew at altitudes as low as 15 km in its
extended mission, resulting in an excellent coverage of the
nearside with high-quality tracking data. Despite the farside
gap, high resolution models with a spherical harmonics
expansion up to a maximum degree of 165 were determined
from the tracking data by making use of the aforementioned
Kaula rule [Konopliv et al., 2001]. However, it was also
realized that the full signal in the tracking data could not be
accounted for even with these large expansions, as signifi-
cant signatures were reported to be seen in the data residuals
[Konopliv et al., 2001]. This has lead to several recent
analyses using local representations of the gravity field over
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the nearside of the Moon: Sugano and Heki [2004a, 2004b]
used line-of-sight accelerations to estimate mass anomalies
on the nearside of the Moon, while Goossens et al. [2005a,
2005b] used Doppler data residuals directly to estimate
gravity anomalies on the lunar surface. Again using line-of-
sight accelerations, Han [2008] employed localized basis
functions to estimate regional gravity fields on the nearside
of the Moon for four locations, up to a resolution in spherical
harmonics comparable to degree and order 200, and recently
Han et al. [2011] updated this analysis to include the whole
of the nearside at the same resolution.
[4] The farside gap in tracking data was only recently

largely filled by the Japanese SELENE mission [Kato et al.,
2010], which employed 4-way Doppler data [Namiki et al.,
1999] between a relay satellite in a highly elliptical (polar)
orbit and a main orbiter in a circular (also polar) orbit at an
average altitude of 100 km above lunar surface while the
latter was over the farside. This has resulted in lunar gravity
field models expressed in spherical harmonics up to a max-
imum degree and order of 100 [Namiki et al., 2009;
Matsumoto et al., 2010]. These models improved the view of
farside gravity dramatically, revealing farside free-air grav-
ity anomalies of large impact basins as negative rings with
central highs, unlike their counterparts on the nearside of the
Moon.
[5] In this paper, we have used the farside Doppler data

from SELENE to investigate whether we can extract more
information from them than can be modeled with global
spherical harmonics. The apolune of Rstar, the relay satellite
involved in the 4-way tracking, was located over the south-
ern hemisphere of the farside, resulting in a denser data
coverage there [Matsumoto et al., 2010]. Figure 1 shows the
4-way residuals with respect to the SELENE lunar gravity
field model SGM100h [Matsumoto et al., 2010], together
with the topography as measured with the laser altimeter
(LALT) on-board SELENE [Araki et al., 2009]. A model of
degree and order 100 in spherical harmonics already pushes
the limits of what can be resolved from an altitude of 100 km
above lunar surface, but the data coverage and remaining
residuals as shown in Figure 1 indicate that there is still
something to be gained from a localized analysis, either in
terms of obtaining an adjustment with higher resolution, or
in terms of redistributing the information in the spectral
domain. In addition, the southern hemisphere of the Moon is
dominated by the South Pole-Aitken (SPA) basin, the largest
impact basin in the solar system (or second largest if the
northern lowlands of Mars are counted as an impact basin).
A localized analysis of this area might provide information
for studying the structure of large impact basins, especially
at smaller scales inside the basin.
[6] For our analysis, we express the gravitational potential

with localized spherical harmonic functions as described by
Han [2008], which in turn was based on localized analysis
on the sphere as given by Wieczorek and Simons [2005],
Simons et al. [2006], and Simons and Dahlen [2006]. Using
SELENE tracking data over only the area of interest, we
estimate adjustments to the coefficients of these localized
functions, rather than estimating adjustments to the coeffi-
cients of a spherical harmonic expansion directly. We com-
pare our localized solution to solutions obtained from
common global spherical harmonics, and we evaluate the

performance of our solution in geophysical analysis using
high resolution topography of the Moon.
[7] This paper is structured as follows. We first introduce

the data and methods in section 2, and in section 3 we
include a benchmark test with LP extended mission data to
establish the validity of the method and its implementation.
In section 4 we show the results we obtained for the SPA
area. The performance of the method is discussed in section 5,
followed by the conclusions in section 6.

2. Data and Methods

[8] The tracking data we use will be the data from
SELENE (apart from our benchmark test case using LP data
as described in section 3). The main interest is in the SPA
area, which means that the focus will be on using SELENE
4-way data. However, 2-way data are also available, because
a satellite can still be tracked from Earth beyond the limbs
and poles of the Moon because of lunar librations. For
instance, Figure 1 showed 4-way residuals with several gaps
close to the south pole, which will be filled with 2-way data.
This also means that there is a lot of LP data over the south
pole, but for reasons explained in section 5 we did not
include them in our local analysis.
[9] The SELENE Doppler tracking data have a count

interval of 10 s. In order to try and obtain more high-
resolution information from them, it is possible to use shorter
count intervals, but since that will also increase the noise
level on the data, we did not pursue this here. Tracking data
are processed with the GEODYN II software [Pavlis et al.,
2006]. While acceleration data as derived from Doppler
residuals have proven to be a very powerful data type for
local analysis, we chose for an integrated approach, where
the local adjustments are estimated from the tracking data
residuals directly. This choice was driven by the fact that the
SELENE 4-way data are integrated data, i.e., they consist of
the accumulated Doppler shift between the various links.
There was no time-tagging for the separate links from which
one could isolate only the Doppler shift between relay and
main satellite. Our processing of the tracking data, in terms
of precision force and measurement modeling, as well as that
in terms of which parameters are estimated, is exactly the
same as that described by Matsumoto et al. [2010]. The
difference between the approach described there and the one
adopted in this work lies in the way that the gravity para-
meters are estimated.
[10] Our localized representation of the gravity potential is

based on the work of Han [2008] (and references therein),
where Slepian functions were used to estimate the gravity
field over certain areas on the nearside of the Moon from
LP line-of-sight accelerations. The Slepian functions are
formed from linear combinations of spherical harmonics.
For clarity, we repeat the basic transformations between the
two sets here, and refer to the aforementioned literature for
the details.
[11] A function f (q, l) on the sphere is expressed in

spherical harmonics as

f q;lð Þ ¼
XL
l¼0

Xl

m¼�l

ulm�Y lm ð1Þ
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where q is the co-latitude, l the longitude, l and m are the
degree and order, respectively, L is the maximum degree of
the expansion, ulm are the coefficients, and �Y lmðq;lÞ are
the normalized spherical harmonics functions. This same
function f (q, l) can be expressed in the alternative basis of
Slepian functions as

f ðq;lÞ ¼
XðLþ1Þ2

n¼1

vngnðq;lÞ ð2Þ

with different coefficients vn and Slepian basis functions
gn(q, l) [e.g., Simons and Dahlen, 2006; Han, 2008]. These
new basis functions gn(q, l) can also be expressed in a
spherical harmonics expansion

gnðq;lÞ ¼
XL
l¼0

Xl

m¼�l

gn;lm�Y lmðq;lÞ: ð3Þ

[12] Equation (3) shows the transformation between the
bases of spherical harmonics and Slepian functions. To
achieve the desired localization of the Slepian functions,
the coefficients gn, lm are determined from maximizing the
ratio between the energy within the desired area, and the
energy over the entire sphere (this ratio is also denoted as
concentration factor). As discussed by Wieczorek and
Simons [2005], this can be posed as an eigenvalue prob-
lem, where the concentration factors are obtained from the
resulting eigenvalues, and the Slepian coefficients gn, lm are
given by the accompanying eigenvectors. Finally, in the
case of the function f(q, l) of equation (2), the coefficients vn

for this expansion can then be found from the Slepian
coefficients gn, lm and the spherical harmonics coefficients
ulm following [Han, 2008]

vn ¼
XL
l¼0

Xl

m¼�l

ulmgn;lm ð4Þ

This results in two equivalent expressions in different
basis functions.
[13] Han [2008] then separates the spherical harmonic

functions into two parts ulm° and ulm
? (or, equivalently, u1 and

u2, as we will call them later), with the former consisting of
those spherical harmonics concentrated in the desired area
up to a chosen concentration factor g0 (i.e., the concentration
factor for the nth Slepian function satisfies gn ≥ g0), and the
latter consisting of the remaining functions outside the cho-
sen area. The full gravitational potential ulm satisfies
ulm = ulm° + ulm

? . Following equation (4), the spherical har-
monics expansion can thus be transformed into Slepian
functions using a linear transformation u = Gv, with u
consisting of the vector of spherical harmonic coefficients
ulm, v consisting of the vector of Slepian coefficients vn, and
G the transformation matrix between them. By splitting this
into the two areas according to:

u ¼ u1 þ u2 ¼ ½G1G2� v1
v2

� �
ð5Þ

Han [2008] then estimated only the Slepian coefficients v1,
i.e., only those that have their concentration in the desired
area, using line-of-sight accelerations as the data type.
This work was further expanded to global lunar gravity

Figure 1. Residuals of 4-way tracking data with respect to the SGM100h model, with the focus on the
SPA region (indicated by a red circle with a spherical radius of 45° centered at 191.1°E, 53.2°S). Topog-
raphy from SELENE altimetry is also shown.
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field modeling from dynamically created normal equations
(see below) by applying localized constraints based on this
principle by Han et al. [2009], and these localized con-
straints were applied to the full set of NASA Moon orbiter
tracking data by Mazarico et al. [2010]. In addition, Han
et al. [2011] recently used the method of Han [2008] to
estimate the gravity field for the whole nearside of the
Moon, again from line-of-sight accelerations. In our analy-
sis, we follow the same principle of dividing the spherical
harmonics coefficients into two parts: the main part that
we are interested in is concentrated over the SPA area, and
the remaining coefficients describe the potential outside
of this area.
[14] Because the focus is on a relatively small area on the

Moon, long-wavelength signals might not be recovered or
represented well in this method. This was noted by Han
[2008], where it was shown that including the lower spher-
ical harmonics degrees into the localized representation
introduced an error of several tens of mGal (1 mGal =
10�5m/s2), whereas this error was much smaller when
components with degrees higher than 30 were used, in the
case of a spherical cap with a radius of 20°. This is thus an
error of the representation form. We found similar issues in
our local solutions, which are created from the localized a
priori model plus the estimated adjustments. If the lower
degrees of the a priori model were included in the localized a
priori part of the constructed solution, we found a strong
north-south component in the recovered anomalies that dis-
appeared when the lower degrees were not included. We
thus do not include the lower degrees of the a priori model in
the localization. Instead, when we reconstruct the full gravity
signal in standard spherical harmonics, we add the (global) a
priori model up to l = 30 after the estimation. There is
however one caveat when applying this remove-restore
technique: the local basis functions have power over all the
degrees, so the adjustment, when transformed back to stan-
dard spherical harmonics, will show non-zero signal for
l < 30. We found however that the amplitude of the adjust-
ments below l = 30 is small, at an RMS (root-mean square)
of around 2 mGal, and the performance of the model as
discussed later in sections 4.3 and 4.4 was unaffected. We
also tried to mitigate the effect on the lower degrees in other
ways, by generating the design matrix A with only entries
for coefficients with l ≥ 30, or by band-limiting the trans-
formation matrix G, to span only the range 30 ≤ l ≤ L, which
makes sure that coefficients with l < 30 do not get adjusted.
The latter requires special attention: as pointed out by
Wieczorek and Simons [2005] and Simons et al. [2006], the
eigenvectors needed to create the localized basis functions
are most easily found from a tridiagonal matrix that com-
mutes with the localization matrix, following results by
Grünbaum et al. [1982]. This works for the full spherical
harmonics range, but for the limited range 30 ≤ l ≤ L, one has
to resort to a direct computation of the localization matrix,
and determine the eigenvectors from this matrix rather than
from the tridiagonal one. Wieczorek and Simons [2005]
point out that this might be less stable, but we encountered
no discernible differences. Both methods however (limiting
the range of the partials, or that of the transformation matrix)
did not lead to large differences between solutions. They
were again at an RMS of a few mGal, and this shows that the
residuals themselves as used in the adjustment already

mostly have their signal confined to the high-frequency part
of the gravity spectrum. We thus assume that the lower
degrees of the gravity field model are already determined
from a global rather than a local analysis.
[15] We use a dynamical approach to process the tracking

data. The data are divided into continuous time spans called
arcs, during which the orbit is integrated using precision
force modeling, and parameters valid for that arc only (such
as initial state vector adjustments, measurement biases, non-
conservative force model coefficients) are adjusted. Once
these are converged (typically when the change in the
weighted root-mean square of data residuals, consisting of
the difference between the observations and those computed
from precision modeling, is less than 2% between itera-
tions), we generate the design matrix for the data used in the
arc. The design matrix describes how the data depend on the
model coefficients, and in standard linear form this is written
as y = A u + e. Here, the vector y contains the data residuals,
u is the vector of adjustments to the aforementioned spher-
ical harmonics coefficients that are to be estimated, e are the
data errors, and A is the design matrix that contains the
partials of the observations with respect to the estimation
parameters. This estimation problem is often solved using
least-squares, which results in the need to form normal
matrices, which are given as ATCd

�1A, where T denotes the
transposed of a matrix, �1 the inverse, and Cd is an a priori
covariance matrix for the data.
[16] For standard global gravity field determination, this

normal matrix is formed from the complete design matrix A
containing all the data included in the arc. In our localized
approach however, we use all the data to converge the arcs,
and then we select only the data over the area of interest for
the formation of a reduced design matrix Ared. We use only
the data over the area of interest because in general those
residuals are mostly affected by the gravity of features
directly beneath them (depending on the data type used).
This does mean that at the boundary the solution will be
affected by features just outside of the area of interest. We
discuss this in sections 3 and 4.3. We then use this reduced
design matrix to form a normal matrix, and then proceed
as usual by aggregating the normal matrices of all arcs
involved, using the SOLVE software [Ullman, 2002]. In the
case that there are both arc and common parameters (those
valid and constant throughout all arcs, such as the gravity
field coefficients) present, the arc parameters can be elimi-
nated through partitioning [e.g., Kaula, 1966]. We then
transform the combined normal matrix following equation
(5), and estimate only the coefficients of v1 which are con-
centrated over the same area as where we collected the data.
This is akin to a truncated singular value decomposition
approach [e.g., Menke, 1989], where only those coefficients
that are observable from the data (i.e., having non-zero sin-
gular values) are estimated.
[17] As pointed out by Simons et al. [2006], and stressed

also by Han [2008], the use of Slepian functions that are
concentrated over a certain area requires far less coefficients
than when a full spherical harmonics expansion is used to
obtain the same resolution. This also means that less coef-
ficients need to be adjusted from the data, which in general
makes the inverse problem more stable, provided of course
that the data actually have the information that is to be
extracted. By choosing only data over the area, we also
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reduce the number of computations that are needed to form
the normal matrices per arc. In this way one is able to
compute local solutions with high resolution much faster
than global solutions with a similar resolution. Another
advantage of the Slepian functions is that they can be
transformed back and forth between spherical harmonics,
which makes them easy to use with existing tracking data
processing tools that are based on a spherical harmonics
expansion of the gravity field.

3. Benchmark Test With LP Data Over
Mare Serenitatis

[18] In order to test the suggested method and its imple-
mentation, we created a benchmark test for a case where the
gravity field of the Moon is well-known: over the nearside
of the Moon. We chose to test the method over the Mare
Serenitatis area, using the same approach as was done by
Goossens et al. [2005b], where the Lunar Prospector
extended mission data over this area were used for local
gravity adjustments. LP extended mission data were col-
lected from January until July 1999, at an average spacecraft
altitude of 30 km [Konopliv et al., 2001]. These data thus
contain a lot of gravity field information at the short wave-
lengths. By using a pre-LP gravity field model in the pro-
cessing, we can compare our local solution with known
high-resolution global LP models, and thus we can infer
whether or not the suggested method can extract the infor-
mation that is in the tracking data. Because we use real data
directly rather than conducting simulations, we can not
quantify the recovery error, but this does give us the
advantage of directly knowing how the method performs in
a real-data environment, while the use of the older gravity
field model ensures that we can also test whether the gravity
field can be recovered at high resolution. We also do a
similar test for our area of interest with the SELENE data,
described in section 5.2, although that test is more meant to
probe the influence of the a priori model used, rather than to
serve as a benchmark test.
[19] We used the same short-arc approach as used by

Goossens et al. [2005b], where LP extended mission track-
ing data were processed in short batches, when the satellite
was over the Serenitatis area. This leads to arcs of typically
ten minutes. We start with an estimate of the initial state
that has been determined from longer arcs, using a high-
resolution LP gravity model (LP150Q, a follow-up to
the 165th degree and order model called LP165P described
by Konopliv et al. [2001]; the LP150Q model can be
found through http://pds-geosciences.wustl.edu/missions/
lunarp/shadr.html). Starting from this estimate minimizes
initial orbit errors. We then process the short-arcs with the
pre-LP GLGM-2 lunar gravity field model [Lemoine et al.,
1997] as a priori model. This model shows a much
smoother signal for Mare Serenitatis than the LP models.
While processing the tracking data with GLGM-2, we fixed
some of the Keplerian orbit elements in order to ensure
convergence of the short-arc orbit determination problem.
Fixed parameters were the same as those of Goossens et al.
[2005b]: the eccentricity, ascending node, and argument
of pericenter. We also noted that the range data are not
as sensitive to local gravity variations as the Doppler
data, since including the range data distorted the solutions.

Doppler data have a better sensitivity, while derived (line-of-
sight) accelerations as applied in many examples (mentioned
in the introduction) are likely to be more superior, as is
especially shown in the recent results of Han et al. [2011],
where high correlations between gravity and topography are
achieved from line-of-sight acceleration data.
[20] We estimate gravity field coefficients equivalent to

a spherical harmonics resolution of degree and order 100,
using Slepian functions concentrated in a spherical cap
of 20° radius, centered around (18°E, 25°N). As described
above in section 2, we do not adjust coefficients up to degree
l = 30. The used concentration factor was 0.0001, and this
leads to having to estimate 477 Slepian coefficients. For
comparison, a global spherical harmonics model up to degree
and order 100 contains 10,197 coefficients. The gravity
anomaly solution of Goossens et al. [2005b] contained 806
discrete anomalies in 1° � 1° blocks, over a square area
(ranging from 5°–30° in longitude, and from 10°–40° in
latitude). Tracking data residuals inside this area were used
in the estimation process. Because the LP extended mission
data were collected at a low altitude, downward continuation
has only a small effect on the errors in the solution, and
the local solutions can be obtained without any kind of reg-
ularization to stabilize the inverse problem [Sugano and
Heki, 2004a; Goossens et al., 2005a, 2005b; Han, 2008].
[21] Figure 2 shows gravity anomalies over the Serenitatis

area, computed from either GLGM-2, LP150Q, or from the
newly estimated model, with all expansions evaluated up to
their respective maximum degree and order. It is immedi-
ately clear that the local solution resembles that of LP150Q
much more than it resembles the smooth GLGM-2 solution,
as the increase in resolution inside the Serenitatis mascon is
readily confirmed. The local solution also resolves the area
around the mascon better than GLGM-2 does, when com-
pared with LP150Q: the negative anomalies surrounding the
mascon come out clearer, and they correlate well with the
signal as seen in the anomalies from LP150Q.
[22] Figure 3 shows the anomaly differences between the

local solution and anomalies from either GLGM-2 or
LP150Q. In addition, to assess boundary effects it also
shows the difference between two local solutions with the
functions concentrated in a spherical cap of either 20° or
10°. The differences with anomalies from GLGM-2 (which
are in fact the adjustments estimated from the data) espe-
cially indicate that the extra signal from the data was
extracted as there is clear structure visible in the differences.
Differences with LP150Q show remaining signal as well,
extending into the mascon itself, although most differences
are concentrated at the boundaries. This is mostly due to
boundary effects that are often present in local solutions, and
which arise because although data are mostly affected by the
gravity of features directly beneath them (as stated earlier),
they also carry information from the surrounding area.
Because we used the same processing (including the same
way to generate the tracking data residuals) as Goossens
et al. [2005b], which used spacecraft tracks covering the
square area listed above, the data do not fully cover the
chosen spherical cap area and this exacerbates the boundary
effects. In order to assess the influence of data coverage,
we also created a solution that estimated only coefficients
in a spherical cap of 10°. This solution is still sensitive
to boundary effects (data outside the cap are also sensitive
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to gravity features outside the area of interest that are not
accounted for), but a comparison between the two solutions
indicates where they are close to each other, and thus where
boundary effects are smaller. The difference plot included in
Figure 3 shows that in general the differences inside the 10°
area are much smaller than the adjustments themselves, but
they still show signal in what appears to be close to a zonal
trend (positive and negative adjustments in the north-south
direction). High-frequency differences with LP150Q can
also be seen inside the mascon. These might stem from
aliasing of higher degrees (note that the local solution pre-
sented here is up to degree and order 100 while the LP data
have information at higher resolutions), but on the other
hand, these were also somewhat visible in the results of

Goossens et al. [2005b]. Finally, correlations between vari-
ous solutions over the mascon area were also computed, and
it was found that the local solution is closer to LP150Q’s
(the correlation between them is 94%) than GLGM-2’s
(a correlation with the local solution of 90%). The correla-
tion between LP150Q and GLGM-2 is 89%.

4. Results for SPA Using SELENE Tracking Data

[23] The straightforward benchmark test served as a proof
of concept, and it showed that the method as implemented,
using Slepian functions, can indeed extract the extra infor-
mation present in the tracking data. We now apply this same
method to SELENE tracking data.

Figure 3. Differences in free-air gravity anomalies between the local solution and either GLGM-2 or
LP150Q. To assess boundary effects, the difference between two local solutions with the functions con-
centrated in a spherical cap of either 20° or 10° are also plotted.

Figure 2. Free-air gravity anomalies over the Serenitatis area computed from GLGM-2, LP150Q, and the
local solution. Each solution is expanded up to its maximum resolution in spherical harmonics, thus 70,
150, and 100, respectively.
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4.1. Processing of the SELENE Tracking Data

[24] We concentrate on the South Pole-Aitken (SPA)
basin. As mentioned in section 2, we process the tracking
data in the same way as was done for the SGM100h model
[Matsumoto et al., 2010], with the difference the a priori
gravity field model that is being used (which was SGM100h
itself in this analysis). Design matrices per arc are generated,
including arc parameters such as initial state vector adjust-
ments and measurement biases, and from them we select
only data over the area of interest. All the parameters that
are adjusted per arc are also included in the reduced design
matrix. The arc lengths used varied per satellite [see also
Matsumoto et al., 2010]: for Rstar they were on average
2.6 days, while for the main satellite they were 12 hours (and
6 hours after a reaction wheel failure in July 2008). The
orbits for Rstar and the main satellite were determined
simultaneously. The arc parameters are eliminated by parti-
tioning when the normal matrices are accumulated. The
influence of these parameters is discussed further in
section 5.1. We used the following data weights in our
solution: 2 mm/s for main orbiter 2-way Doppler data,
1 mm/s for relay satellite Doppler data (due to different
ground stations being used), and 1 mm/s for 4-way data.
[25] We adopt the coordinates of the center of the SPA

basin as given by Garrick-Bethell and Zuber [2009], i.e.,
(191.1°E, 53.2°S). We include data in a spherical cap area
with a radius of 45° around this center (this area is also
indicated in Figure 1, which showed the SELENE 4-way
residuals), and we also estimate the Slepian functions coef-
ficients concentrated in this area, with a concentration factor
of 10�8, and an equivalent spherical harmonics resolution of
150 degrees and orders, which results in estimating 4,446
Slepian function coefficients (compared to 22,797 coeffi-
cients for a full spherical harmonics solution of the same
resolution). This area is slightly larger than the SPA area
itself, to account for boundary effects, which we discuss in
section 4.3.
[26] Considering that the tracking data are obtained from

SELENE’s main orbiter in an orbit at 100 km above the
lunar surface, this resolution is likely beyond the sensitivity
of the data. We use this resolution because the use of Slepian
functions allows us to estimate many fewer coefficients than
when we would estimate an equivalent spherical harmonics
model. Nevertheless, we found that we needed regulariza-
tion for this data set to damp the amplitude in the estimated
coefficients, despite the fact that local methods are often
applied to circumvent the need for regularization. This need
was to be expected however, mostly because of the main
orbiter altitude at which the downward continuation of errors
is substantial (as opposed to the LP extended mission results
presented in the previous section, which were at a much
lower altitude), but also from the amount of 4-way data
available. For SELENE, 2-way data outnumbered 4-way
data by a great amount [Matsumoto et al., 2010]. The total
number of data into our solution was 203,927 points, of
which roughly 170,000 were 2-way data, and only 34,000
were 4-way data. The concentration factor (chosen to be
10�8 from an analysis of the representation error) affects the
number of coefficients that will be estimated, but we found
that changing this to 0.0001 (resulting in 3093 coefficients)
did not take away the need to regularize the solution.

Differences between solutions with these two concentration
factors were small and located at the boundary.
[27] To regularize the inverse problem, we constrained

each coefficient toward zero with an a priori uncertainty
following Kaula’s rule [Kaula, 1966], sl = b/l2, with l the
spherical harmonics degree, sl the uncertainty for the set of
coefficients from the same degree, and b a constant. Since
this is expressed in spherical harmonics, regularization was
applied to the spherical harmonics normal matrix, after
which the transformation following equation (5) was applied
[see also Han et al., 2009]. The constant we used was
3.6 ⋅ 10�4, the same as was used for the SGM100h model
[Matsumoto et al., 2010]. We also tested other constants and
a power law based on the gravity potential from uncom-
pensated topography, as was also done by Mazarico et al.
[2010], but we found that this did not influence the final
results much, as the influence of the different regulariza-
tion rules was confined to the higher degrees, where corre-
lations with topography have dropped, see also results in
section 4.3.

4.2. Local Gravity Results for SPA

[28] With the aforementioned processing, we obtained
gravity adjustments over the SPA area as depicted in
Figure 4 as free-air anomalies. The adjustments are in gen-
eral small, between plus and minus 68 mGal, with an RMS
of 17 mGal. Foremost, this indicates that the a priori model
SGM100h already captures the information in the 4-way
data well. The adjustments do show clear signals, with
an outstanding circular anomaly signal which is located
over the southern rim of the Apollo basin (location 36.1°S,
151.8°W, diameter 537 km). There is also a distinct north-
south pattern visible in the adjustments. This trend follows
the ground track of the satellites involved, which is also
seen in other high resolution lunar gravity field models,
especially over the farside when there are no direct tracking
data available [e.g., Konopliv et al., 2001]. In our case,
we think this is mainly caused by the 2-way data. The
line-of-sight geometry around the south pole is such that
the 2-way data are likely to be less sensitive to radial gravity
signals, since their line-of-sight is close to perpendicular
to the radial direction there. For the 4-way data, the sensi-
tivity depends on the exact geometry between the main
orbiter and the relay satellite. The 4-way residuals are
thought to describe mostly the remaining signal between
these two, despite the data being integrated data over the
various links. Because the relay satellite is in a higher
orbit with the apolune over the lunar southern hemisphere,
it should be less affected by gravity perturbations. This is
also corroborated by small 2-way residuals for the relay
satellite [see Matsumoto et al., 2010]. In Figure 5 we plotted
the angle between the radial direction, defined as the direc-
tion from the center of the Moon to the ground track point
of the main orbiter in lunar-fixed coordinates, and the vector
from the main satellite to the relay satellite. If this angle is
small, the 4-way link between relay and main satellite is in
line with the radial direction. Figure 5, however, shows that
there are lots of tracks with a large angle, and they tend to
correlate visually with the tracks in Figure 4. The histogram
included in Figure 5 that shows the number of data points in
angle bins of 5° also shows there are many data points with
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large angles. This means that some of the tracks as seen in
Figure 4 might also be due to 4-way geometry, although we
emphasize that the 4-way data are not treated as line-of-sight
data, but as the fully integrated data that they are. Never-
theless, with the 2-way data outnumbering the 4-way data by
almost 5 to 1, there is a strong effect present on the solution,

which we can not avoid with our current data set. It might be
possible to mitigate this effect slightly by re-weighting the
data, but we did not pursue this, since we wanted to weight
the data as close as possible to the weights used for
SGM100h. In our benchmark test in section 3 such an orbital
track effect was not present, but this is likely because there

Figure 5. Geometry of the 4-way data over the SPA area. (left) The angle between the radial direction
(taken as the ground track point of the main orbiter in lunar fixed coordinates) and the vector from the
main satellite to the relay satellite are plotted, as well as (right) a histogram of counts of angles in 5° bins.
Both plots show there is a substantial portion of the data with large angles, meaning less radial sensitivity.

Figure 4. Adjustments in (free-air) gravity anomalies for the SPA region from the local method, together
with the full solution (a priori SGM100h and local adjustment). The projection is gnomonic, centered
around 191.1°E, 53.2°S. The names of several features on the lunar surface are also included in the adjust-
ment plot, for reference. They are left-justified at the center of the feature, which means that the feature
that is referred to is located at the start of its name.
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the angle of line-of-sight with respect to the area of interest
is different, and shorter arcs were used.
[29] Finally, there is also more variation in the free-air

adjustments in the southern part of SPA. This is because
there are more data available there, due to the inclusion of
2-way data around the south pole. These variations correlate
with features such as Planck (57.9°S, 136.8°E, 314 km),
Schrödinger (75°S, 132.4°E, 312 km) and Poincaré (56.7°S,
163.6°E, 319 km).
[30] When comparing the full solution (adjustment plus a

priori field) to the a priori field only, the differences are more
difficult to spot due to the different scales involved. When
the two are displayed after each other in a loop (see auxiliary
material), it becomes clear that the local adjustments modify
the global a priori solution from SGM100h in such a way
that several anomalies become less pronounced (e.g., the
anomaly on the southern part of the ring around Apollo).1

The modifications of the features mentioned in the previous
paragraph can be seen as well. They are more clear when
viewed in this way, since their full signal is visible, rather
than the adjustments only. The interior area of SPA is also
slightly modified.
[31] The adjustments themselves only show the differ-

ences with the a priori field, and obviously from those alone
one can not tell whether there really is an improvement or
not. We therefore evaluated the local solution by looking at
the 4-way data fit. And in the next subsections, we evaluate
the local solution in a geophysical sense by comparing
gravity and topography.
[32] Data fit to the 4-way data for the new solution is

difficult to evaluate, due to the local nature of the adjust-
ments: the concentration of the Slepian functions means that
they should be evaluated only within the area, whereas the
arcs used in our dynamical approach cover the whole Moon.
In order to have a direct comparison, instead of using the
initial arcs used for the processing, we used the short-
arc approach as applied in the benchmark test over Mare
Serenitatis, in this case on a few selected tracks of 4-way
data over the SPA area. We also included one pass of 4-way
data obtained on January 30 of 2009, that filled in a
remaining gap over the farside [Matsumoto et al., 2010].
During this pass, the main orbiter flew at an average altitude
of 60 km instead of 100 km. We found that in general the
local solution results in a slightly better 4-way data fit than
the a priori model. As can be expected from the adjustments,
the improvements are small: from 0.2 mm/s to 0.17 mm/s, in
an RMS sense. For the 4-way data taken on January 30,
2009, the improvement is from 0.24 mm/s to 0.18 mm/s.
These values are smaller than the 4-way data fit values
reported before byMatsumoto et al. [2010], because they are
for short arcs. Overall, the local solutions thus improve the
data fit, albeit only slightly. The data fit improvements
however are thought to be indicative yet inconclusive, since
the trackiness in the solution might be an artifact of
remaining orbital signals, causing the fit to be better while
inducing spurious signal into the gravity solution. Hence we
look at different ways of validation.

4.3. Comparison With Lunar Topography

[33] For the lack of direct and independent measurements
of gravity on the planets, which could be used for evaluation
and calibration of the models, the correlation between
gravity and topography is often used to evaluate a gravity
field model, with the idea that especially at the higher
degrees of the spectrum uncompensated topography con-
tributes directly to the measured gravity field, and thus
higher correlations indicate an improvement. Here, we use
the methods of Wieczorek and Simons [2005] to compute
correlations and admittance between gravity and topography
over the SPA area, and we also look at spatial correlations
between gravity adjustments and craters on the lunar surface.
[34] Figure 6 shows the correlation and admittance

between various gravity models, and a topography model
derived from SELENE LALT data [Araki et al., 2009]. The
results also include a gravity model named SGM150, which
is a preliminary 150th degree and order spherical harmonics
expansion of the lunar gravity field, based on the SELENE
data that were used for SGM100h, and historical tracking
data coming from Lunar Orbiters 1-3, the Apollo 15 and
16 sub-satellites (all satellites with non-polar inclinations),
and all Lunar Prospector tracking data, including the
extended mission data (which so far has not been included in
the 100th degree and order SELENE models). LP extended
mission data were processed in arc lengths of 2 days, using a
data weight of 3 mm/s for Doppler data from January 1999
until May 1999, and a data weight of 6 mm/s for Doppler
data from May 1999 until the end of the mission. This
division was chosen following Konopliv et al. [2001], where
different data weights were applied according to the location
of the perilune of LP (over the nearside for the first half of
the extended mission, and over the farside for the second
half). SGM150 was furthermore estimated using a Kaula
rule of 2.5 ⋅ 10�4/l2, slightly stricter than what we applied
to our local solution, but the same as other global solutions
of the same resolution [Konopliv et al., 2001; Mazarico
et al., 2010].
[35] The results in Figure 6 show that the local solution

has the highest correlations with topography. The differ-
ences are again not large, but they are pronounced for
especially the degrees spanning l = 60–75. The trackiness in
the adjustments (see Figure 4) does thus not affect the
solution up to these degrees. After about degree 75, all
solutions show a distinct drop in their correlation with
topography, and this is likely because at this point the Kaula
smoothing starts to become noticeable [Matsumoto et al.,
2010]. We used a spherical cap of 30° for the localization,
in order to be safe from boundary effects in the local solu-
tion. While 30° seems conservative, the correlations are
always better for the local solution for larger cap sizes, but
the differences between the gravity solutions become less
pronounced. This means that, as often in local inversions,
one should be careful with the solution at the boundaries.
We also discuss this further in this section, when correlating
topography and adjustments spatially.
[36] At the higher end of the spectrum, beyond degree 90,

SGM150 has better correlations than the local solution. This
is probably due to the inclusion of the LP extended mission
data into SGM150, showing that these data have an effect
at the higher degrees (likely especially over the south pole,

1Auxiliary material data sets are available at ftp://ftp.agu.org/apend/je/
2011je003831. Other auxiliary material files are in the HTML. doi:10.1029/
2011JE003831.
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as the 2-way data accumulate there), although for both
models, correlations are dropping for the higher degrees. We
discuss the LP extended data further in section 5.
[37] The drop in correlations indicate that the solutions are

losing their strength. The SELENE farside data assure that
spherical harmonics models can be estimated up to degree
and order 70 without the use of applying an a priori con-
straint [Matsumoto et al., 2010]. It is also beyond this degree
that the correlations with topography start to drop. This
might lead one to wonder whether the data allow a 150th
degree and order solution. However, a 100th degree and
order local solution does not show the improved correlations
as the 150th degree and order solution shown in Figure 6
does. This leads us to reason that even though the full res-
olution of 150 by 150 might not be exploited, increasing
the resolution at least assures an internal distribution of
the signal over the model coefficients such that overall the
solution improves up to about degree 75. This was also
corroborated by a 120 degree and order local solution
that we tested, that showed the same correlations as the 150
degree and order local solution.
[38] The admittance values (the transfer function between

gravity and topography) are also shown in Figure 6. They
show slightly different values in the same range of degrees
as the difference in correlations did. All models are
quite steady and level off at a value slightly higher than

100 mGal/km. The local solution provides the most leveled
and steady admittance value, at 104 mGal/km, whereas
SGM100h reaches 102 mGal/km and SGM150 reaches
99 mGal/km. We also point out that Figure 6 shows a second
plateau for the admittance values for the local solution,
between degrees 70 and 90, with a value of 85 mGal/km,
which is not as pronounced in the other solutions. For
comparison, we also included the admittance between
LP150Q and the LALT topography, indicating how admit-
tance estimates have changed with the inclusion of SELENE
farside data. Admittance values can be used to estimate the
lithospheric thickness [e.g., McKenzie and Nimmo, 1997;
Crosby and McKenzie, 2005].
[39] To assess the correlations with topography spatially,

we investigated the correspondence between the local grav-
ity adjustments and craters on the lunar surface. We did this
by plotting the crater database of Head et al. [2010] (who
produced a catalogue of impact craters ≥20 km in diameter
on the lunar surface) on top of the adjustments evaluated
between degrees l = 40–80, the result of which is shown in
Figure 7. We chose this frequency band because between
those degrees, the correlation with topography increased, as
explained before. There is sometimes an offset between
anomalies and craters, especially in the south-western part of
the solution, which could be due to issues of data coverage
or orbital errors, but for the larger part anomalies correlate

Figure 6. (top) Localized correlations and (bottom) admittance over the SPA area, for a spherical cap of
30°, for various gravity field models.
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with craters. For example, the outstanding adjustment at the
rim of Apollo follows a trail of small-scale craters rather
well, and several smaller craters show negative adjustments.
Figure 7 thus shows that the adjustments correspond to
surface features, as was also inferred from increased corre-
lations with topography.
[40] To assess the sensitivity of the adjustments with

respect to the aforementioned boundary effects, we investi-
gated the differences between two local solutions, based on
localized functions in a cap of either 45° or 40° (and using
data in those areas). These are also shown in Figure 7, again
in the frequency band l = 40–80. As was the case with the
results shown in section 3 when boundary effects were
discussed, both solutions are affected by these effects. In
addition, the difference plot in Figure 7 shows large differ-
ences outside the 40° area because the 40° solution is
undefined there. Differences between the solutions are of
a smaller amplitude than the adjustments themselves, but
nevertheless the interior of the solution area is affected,
with the biggest differences within several degrees of the 40°
boundary. Some of the differences shown in Figure 7 cor-
relate with small craters, although those are mostly on or
outside of the 40° boundary. Overall however, the interior of
the SPA area seems to be stable between both solutions,
which makes us reasonably confident of the adjustments.

4.4. Bouguer Anomalies

[41] One of the advantages of the Slepian functions is their
direct interchangeability with spherical harmonics, which
means that it is relatively straightforward to derive properties
other than free-air anomalies from the estimated coefficients.
Using the local solution and LALT topography, we com-
puted Bouguer anomalies for the SPA area, assuming a
crustal density of 2800 kg/m3 and leaving out corrections for

mare basalt. Bouguer anomalies for the local solution and
SGM100h are shown in Figure 8.
[42] The differences between the two solutions are more

clear here than from the free-air anomalies, since the
Bouguer anomalies have a wider range. Improvements in
resolution for the local solution (while keeping in mind that
the local solution is a larger expansion, in spherical harmo-
nics) can be seen as certain features show more detail: for
example, in the interior of SPA, around Apollo, Schrödinger,
Planck, and in the vicinity of the Zeeman crater (75.2°S,
133.6°W, 190 km). Figure 9 shows the differences in
Bouguer anomalies, with craters again plotted on top of
the anomalies, and the aforementioned features are indicated
as well. The differences are again most pronounced around
the boundary areas, and while those are also influenced by
boundary effects on the local solution, it should also be kept
in mind that there is rougher topography at the edges of
SPA (see Figure 1). Other differences correlate well with
topographic surface features, as indicated by the agreement
of anomaly differences with crater locations (although one
should keep in mind that Bouguer anomalies were computed
using topography data as input), especially in the southern
part of SPA. This is possibly due to better data coverage
there, despite trackiness induced by the 2-way data that has
disappeared in the Bouguer adjustments.
[43] From Bouguer anomalies, the compensation state can

be derived. As expected, our results here do not change the
overall compensation state of SPA as found by previous
analysis [e.g., Zuber et al., 1994], since our adjustments are
relatively small with respect to the overall signal. While the
extremes in Bouguer anomalies in Figure 9 vary between
�200 mGal, the overall change is more modest, with an
increase in the RMS of the Bouguer anomalies in the
SPA area up to 289 mGal, from 283 mGal for SGM100h.

Figure 7. (left) Adjustments expressed as free-air gravity anomalies, in the frequency band that showed
increased correlations with topography (l = 40–80), and (right) differences between two local solutions
using either data in a cap of 45° or 40°, to assess boundary effects. The 40° boundary is indicated
by the dotted red line. Craters with sizes ≥ 60 km, taken from Head et al. [2010], are indicated by
black circles.
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Understanding SPA’s compensation state may help in
understanding how SPA contributed to the lunar orientation
[Garrick-Bethell and Zuber, 2009], and local differences
within SPA itself may point to modifications to the crustal
structure that occurred after formation of SPA [e.g.,
Neumann et al., 1996]. In that respect, it is interesting to note
that from Figure 8 a modification in Bouguer anomalies
corresponding to the Zeeman crater (indicated in Figure 9)
stands out. Two small circular negative Bouguer anomalies
close to the south pole can be seen clearly in the local
solution, while they were less visible (and not negative) in
the SGM100h solution. The lower of the two corresponds
to the Zeeman crater, while the upper of the two is at least
partly covered by it. We point out that Zeeman is one of the

features where Yamamoto et al. [2010] found exposures of
olivine, which could lead to a different Bouguer signal, and a
signature in the Moho uplift (see below).
[44] Finally, we tested how our new solution modifies the

estimate of the Moho topography beneath the SPA basin.
We compare our results with those presented by Ishihara
et al. [2009] (which were based on a predecessor model of
SGM100h, called SGM100g), and since those results were
based on a global expansion of the gravity field, we trans-
formed our local solution to an equivalent spherical harmo-
nics expansion valid over the entire globe. We do this by
simply generating free-air anomalies from the local solution
within the SPA basin (in this case limited to a spherical
cap of 32° radius to prevent boundary effects leaking into
the solution), and from SGM100h outside the basin. We
then estimate a global 100th degree and order model from
these anomalies. This model has the same correlations with
topography as the local model. There are some anomaly
differences within the SPA basin when compared to the local
solution, and this model does not take full advantage of the
increased resolution of the local solution, but on the other
hand, Ishihara et al. [2009] used SGM100g up to degree and
order 70, and we also find that up to this degree our local
solution has increased correlations with topography. In other
words, the loss of resolution should have only a small effect.
Local crustal thickness analysis might be applied in order
to make more use of increased resolution.
[45] For determining the Moho topography, we expanded

the models up to degree 80, using the same gravity inversion
method as Ishihara et al. [2009]. Figure 10 shows the Moho
topography for different gravity field models beneath SPA.
Their differences are also included, and from these, the
modification on the southern rim of the Apollo basin that
was also found in the free-air anomalies clearly stands out.
It should be noted however that the feature disappears in the
local solution, making the Moho structure south of the rim of
Apollo a little smoother. The modification in the Zeeman
crater that was found in the Bouguer anomalies can also be

Figure 9. Difference in Bouguer anomalies over the SPA
area between the local solution and SGM100h, with craters
with sizes ≥ 60 km indicated.

Figure 8. Bouguer anomalies over the SPA area from both the local solution and SGM100h.
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seen. From the differences only, it shows more uplift in the
local model than it does for the global models, especially
SGM150. However, our local solution does not seem to
indicate a mantle plug associated with this area. Finally, the
southern part of SPA is again affected most because there
were more data there.

5. Discussion

[46] Here, we discuss the performance of the recovery
method, with respect to specific choices we made, such as
the choice of estimated parameters and the a priori model.
We also briefly discuss the use of LP extended mission data.

5.1. State Vector Effects

[47] As mentioned in section 4.1, we formed the normal
matrices per arc from the data over the SPA area, while
including arc parameters (such as the adjustments to the
initial states of the satellites involved, measurement biases
and arc-dependent solar radiation pressure force model
parameters). The integration of the orbit and computation of
the measurements according the used models is then iterated,
with the arc parameters adjusted per iteration (keeping
the global parameters fixed) in order to fit to the tracking
data, until convergence is reached. These arc parameters
were then eliminated from the formed normal matrix by
partitioning, during the aggregation of the separate normal

matrices. We tested whether or not these parameters need to
be included by also forming normal matrices using only the
partial derivatives with respect to the gravity parameters.
This is different from eliminating the arc parameters all
together, since by choosing only the gravitational para-
meters, the correlations between arc and common para-
meters are not accounted for. We found however that the
solutions using only the partials for the gravity coefficients
did not show increased correlations with topography. Cor-
relations in the range l = 60–75 dropped below those for
SGM100h, and also those in the higher degrees (beyond
100) were negatively affected. Gravity anomaly differences
between these two local solutions (with and without the arc
parameters included) are mostly confined to the southern
part of SPA. The solution using only the gravity partials
also shows more trackiness in its free-air anomalies. This
indicates that there are still state vector effects present that
need to be accounted for in the solution. Again, this likely
affects the 2-way Doppler data most, since these data have
coverage limited to the southern part of SPA.
[48] During the partitioning step, the arc parameters are

eliminated through back-substitution which involves the
inverse of the sub-matrix containing the arc parameters [e.g.,
Kaula, 1966]. We use all the data in the two-day arcs to
converge them, but using only the data over the area of
interest to form the normal matrix might lead to numerical

Figure 10. Moho topography beneath SPA using different gravity field models and their differences.
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instabilities in the inversion of especially the arc parameters
part when the normal matrices are aggregated. This is done
with the SOLVE software, which allows for a dynamical
suppression in the Cholesky inversion of parameters that
turn out to have poor observability (indicated by very small
or even negative numbers on the diagonal). Inspection of the
results has shown that this is sometimes the case, mostly for
certain bias-parameters that were included, but occasionally
also for state vector parameters. Since we wanted to include
all available 4-way data, we did not exclude those normal
matrices where this was the case from the solution.

5.2. Influence of the a Priori Gravity Field Model

[49] In order to test the sensitivity of the method with
respect to the a priori model, we processed the same data
using LP100K [Konopliv and Yuan, 1999] as the a priori
gravity field model. In this case the a priori model is inde-
pendent of the SELENE data, as LP100K is a 100th degree
and order spherical harmonics model based on LP tracking
data (and as such, a precursor to the LP165P and LP150Q
models). This test is similar in extent to the benchmark
test presented in section 3, in that we process the data with
an independent model to test whether the information can
be extracted from the data. For LP100K, the gravity field
over the SPA region is much smoother than that described
by SGM100h, and a basin such as Apollo is not circular
in shape. Correlations with topography over the SPA area
are also much lower than those for the SGM100h and
SGM150 models, with a distinct low around degree 60
where the correlations are close to zero. The SELENE 4-way
data show large residuals with respect to LP100K [Namiki
et al., 2009].
[50] We found that our local solution based on LP100K as

a priori model resolves the structure within the SPA basin
rather well. The Apollo, Planck and Ingenii features stand
out much clearer in the local solution than they do in
anomalies computed from LP100K. Yet there is also some
orbital trackiness visible in the solution, and while correla-
tions with topography improve drastically over those for
LP100K, up to correlations of 0.89 for the range l = 40–70,
they do not reach the levels as obtained by the global or local
SELENE models, which is about 0.93 for the same range.
This means that we can only adjust the a priori model to
some extent, and that, unsurprisingly, we get the best solu-
tions if we start with a model that already describes the data
well. One should also keep in mind that the dynamical
approach in processing the tracking data here assumes line-
arity, and that global spherical harmonics models are often
determined from multiple iterations over the data. Due to the
local nature of our representation of the gravity field, which
should only be evaluated within the area of interest, we did
not iterate our solutions, since that would require processing
arcs which also cover the rest of the Moon, outside of SPA.

5.3. LP Extended Mission Data

[51] LP extended mission data are especially interesting
for local nearside analysis, and they have been the focus of
previous local and regional analyses. And since we have also
included SELENE 2-way Doppler data beyond the south
pole, LP extended mission data might be included as well.
We processed the LP extended mission data in the same
way as they were processed for the SGM150 model (see

section 4.3). We again selected only data over the SPA area
when adding them to our local solution. Since these data
are not included in SGM100h, they showed large residuals,
and this has a profound effect on the solution: it shows large
unrealistic gravity anomaly fluctuations.
[52] When we compared various gravity models in terms

of their correlations with topography (see section 4.3), we
noted that the SGM150 model showed increased correlations
at the higher degrees, likely coming from the influence of LP
extended mission data. In order to bypass the large residuals
in the LP extended mission data when we process them with
SGM100h, we recomputed the local solution starting from
SGM150 instead (which included the LP extended mission
data), using both SELENE and LP extended mission data.
The SELENE-only solution shows similar free-air anom-
alies and correlations as the local solution starting from
SGM100h. When we include the LP extended mission data
however, correlations with topography unfortunately drop
again, and orbital trackiness starts to appear in the solutions.
If we down-weight the LP extended mission data when
combining the normal matrix with that of the SELENE data,
the solution improves, but it does not lead to for example
increased correlations when compared to the SELENE data-
only solution. Sensitivity issues as discussed in section 4.2
might especially play an important role here, and thus the
LP extended data were not included into our solutions.

6. Conclusions

[53] We have estimated adjustments to a global lunar
gravity field model over a limited area, by representing the
gravity field by means of localized basis functions. We
applied Slepian basis functions, which are represented
by linear combinations of standard spherical harmonics.
This makes them relatively straightforward to use in com-
bination with existing data processing strategies based on
spherical harmonics. We process tracking data in the stan-
dard dynamical way, which means that we follow an inte-
grated approach where the local adjustments are estimated
from the tracking data residuals directly (as opposed to
numerically differentiating the Doppler residuals to obtain
accelerations). This is especially useful for tracking data that
consist of the accumulated Doppler shift between different
links, such as the SELENE 4-way data. We generate the
design matrix (which describes the linearized relationship
between the residuals and the estimated parameters) using
only data over the area of interest. From these reduced
design matrices we create normal matrices and aggregate
them in the standard way. The normal matrix is then trans-
formed from spherical harmonics into Slepian functions, and
we only estimate those function coefficients with a concen-
tration factor larger than a pre-set value, which means that
only functions that have power in the area of interest are
estimated. The estimation is done in a least-squares sense.
[54] A benchmark test for the gravity recovery method

was conducted, using Lunar Prospector (LP) extended
mission tracking data over the Mare Serenitatis area on
the nearside of the Moon. The data were processed with a
pre-LP lunar gravity field model (GLGM-2) that shows
smoothed gravity anomalies over Serenitatis when compared
with LP-based lunar gravity field models. The test showed
that the method as implemented can extract the high
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resolution information from the tracking data, as we found
improved correlations with anomalies from a high resolution
global lunar gravity field model using LP data.
[55] We then estimated adjustments to the 100th degree

and order SGM100h model for the SPA area, using Slepian
functions in a resolution equivalent to degree and order 150
in spherical harmonics over an area with a spherical cap of
45° radius, centered at (191.1°E, 53.2°S), resulting in the
need to estimate 4,446 Slepian function coefficients (as
opposed to the 22,797 needed for a full global spherical
harmonics model). The use of a limited set of data (only
those over the area of interest) also means that we can create
our local solutions much faster than a global solution of
equivalent resolution. We applied a Kaula rule of 3.6 ⋅ 10�4/
l2 to this solution to prevent large fluctuations in gravity
anomalies. We used SELENE tracking data, including 4-
way data over the SPA area, and 2-way data slightly beyond
the south pole of the Moon. Even though we estimate fewer
coefficients, the resolution of the model and the satellite
altitude of 100 km are such that smoothing is required. An
investigation into the effects of choosing data only over the
area of interest showed that the solutions are generally
affected up to a few degrees into the area of interest.
[56] The adjustments are small in general, between plus

and minus 68 mGal with an RMS of 17 mGal. Foremost, this
indicates that the a priori model SGM100h captures the
information in the 4-way data well. Our new local solution
shows increased correlations with high-resolution lunar
topography, and admittance values that are slightly different
and more leveled when compared to those from global
models using the same SELENE data. Free-air anomaly
adjustments, evaluated in the frequency band l = 40–80
(where the increase in correlations with topography was
concentrated) correlate with craters on the lunar surface.
Since our local solution is easily transformed into spherical
harmonics, we also computed Bouguer anomalies. The local
solution shows an increased resolution inside the SPA area,
and differences with Bouguer anomalies from the global
models correlate well with topographic surface features. The
overall compensation state of SPA as found by previous
analysis is not changed by our results, since we mostly
adjust the global lunar gravity field models at their short-
wavelength components. The Moho structure beneath the
SPA basin is slightly modified by our solution, most notably
at the southern rim of the Apollo basin, where a previously
outstanding feature now appears smooth. We also found
modifications in Moho structure and Bouguer anomalies for
the area corresponding to the Zeeman crater (where olivine
exposures were found).
[57] We demonstrated that the method can complement

global solutions by refining them over areas where data are
more dense. This might be especially of interest for future
planetary missions such as GRAIL [Zuber et al., 2008],
where the lunar gravity field will be mapped from low-low
satellite tracking data. While it is outside of the scope of this
work to do a full analysis, such a data type is highly sensitive
to local gravity field variations, and thus suitable for a local
method such as presented here.
[58] The local solution over the SPA area that we pre-

sented here is made publicly available as a set of normal-
ized spherical harmonics coefficients through the RISE Data

Archive Web site, which can be found at http://www.miz.
nao.ac.jp/rise-pub/en.
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